Dobryshev R. Y., Maksymov M. V. / Herald of Advanced Information Technology
2024; Vol.7 No.3: 253-261

DOI: https://doi.org/10.15276/hait.07.2024.17
UDC 004.932.72

Accurate crowd counting for intelligent video
surveillance systems

Ruslan Y. DobryshevY

ORCID: https://orcid.org/0009-0007-8639-3157, rdobrishev@gmail.com

Maksym V. Maksymov"

ORCID: https://orcid.org/0000-0002-3292-3112, prof.maksimov@gmail.com, Scopus Author ID: 7005088554
1 Odesa Polytechnic National University, 1, Shevchenko Av. Odesa, 65044, Ukraine

ABSTRACT

The paper presents a novel deep learning approach for crowd counting in intelligent video surveillance systems, addressing the
growing need for accurate monitoring of public spaces in urban environments. The demand for precise crowd estimation arises from
challenges related to security, public safety, and efficiency in urban areas, particularly during large public events. Existing crowd
counting techniques, including feature-based object detection and regression-based methods, face limitations in high-density
environments due to occlusions, lighting variations, and diverse human figures. To overcome these challenges, the authors propose a
new deep encoder-decoder architecture based on VGG16, which incorporates hierarchical feature extraction with spatial and channel
attention mechanisms. This architecture enhances the model’s ability to manage variations in crowd density, leveraging adaptive
pooling and dilated convolutions to extract meaningful features from dense crowds. The model’s decoder is further refined to handle
sparse and crowded scenes through separate density maps, improving its adaptability and accuracy. Evaluations of the proposed
model on benchmark datasets, including Shanghai Tech and UCF CC 50, demonstrate superior performance over state-of-the-art
methods, with significant improvements in mean absolute error and mean squared error metrics. The paper emphasizes the
importance of addressing environmental variability and scale differences in crowded environments and shows that the proposed
model is effective in both sparse and dense crowd conditions. This research contributes to the advancement of intelligent video
surveillance systems by providing a more accurate and efficient method for crowd counting, with potential applications in public
safety, transportation management, and urban planning.

Keywords: Crowd counting; intelligent video surveillance; deep learning; encoder-decoder architecture; density map
estimation; hierarchical feature extraction; convolutional neural networks; public safety monitoring

For citation: Dobryshev R. Y., Maksymov M. V. “Accurate crowd counting for intelligent video surveillance systems”. Herald of Advanced
Information Technology. 2024; Vol.7 No.3: 253—261. DOI: https://doi.org/10.15276/hait.07.2024.17

INTRODUCTION, FORMULATION OF crowd counting. This task plays a fundamental role

THE PROBLEM in IVS functionality as it not only enables the
estimation of crowd density but also helps identify
abnormal situations, such as excessive crowding in
confined spaces, which could indicate potential
threats like evacuation risks. Additionally, accurate
people counting facilitates better crowd management
in densely populated areas such as stadiums, train
stations, airports, and shopping malls. In the context
of pandemics and other mass public health threats,
the ability to precisely estimate the number of
individuals in restricted areas allows for more
effective application of distancing measures and
other control protocols (Fig. 1).

Despite its relevance and importance, crowd
counting is a highly complex task from a technical
standpoint. Various factors complicate the process:
variations in people’s postures and positions,
occlusions caused by overlapping individuals,
changes in lighting, dynamic crowd movements, and
the diversity of human figures. All of these factors

Intelligent video surveillance systems (IVS)
have rapidly advanced and become a crucial
component in modern security frameworks. In recent
years, with the growth of urban areas, increasing
foot traffic in public spaces, and rising security
threats, the demand for solutions that can
autonomously ~ monitor  large  crowds  has
significantly increased. Intelligent video surveillance
systems are now an integral part of smart cities,
access control systems, and public safety
enforcement. As urbanization continues to grow, the
automation of video stream analysis for monitoring
human crowds becomes critical. This opens the door
to solving key problems, such as anomaly detection,
public event safety management, and optimizing
public transportation efficiency.

One of the most important tasks faced by
modern intelligent surveillance systems is accurate
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reliable and accurate counting algorithms. Particular
difficulties arise when dealing with dense crowds,
where individual figures overlap, making the visual
separation of people extremely challenging.
Addressing these issues requires sophisticated
computer vision algorithms, machine learning, and
deep learning techniques that can handle non-
standard filming conditions.

Traditional methods, such as feature-based
object detection or motion analysis, have long been
employed in crowd counting tasks. However, these
methods suffer from several limitations. First, they
are often ineffective in high-density crowd
environments, where the visual features of
individuals may be obscured. Second, existing
methods are often sensitive to environmental
conditions: changes in lighting or the presence of
dynamic objects in the background can significantly
reduce their accuracy. Additionally, many methods
require complex image preprocessing or the use of
additional sensors, increasing the complexity and
cost of such systems.

Modern approaches based on deep neural
networks have dramatically improved crowd
counting performance, but even they are not without
limitations. One of the major issues with deep
learning-based solutions is the need for large
datasets for training, which is not always feasible in
real-world scenarios.

Moreover, deep learning models are prone to
overfitting and can be sensitive to changes in
environmental parameters, such as camera angle or
crowd density. Another significant drawback is the
demand for extensive computational resources,
which limits the deployment of these methods on
low-power devices.

Thus, despite the impressive progress achieved
in the field of crowd counting, existing methods still
face numerous challenges. Insufficient accuracy,
particularly under complex conditions, high
computational costs, and dependence on data quality
leave room for further research and development of
more efficient and versatile solutions. The
advancement of intelligent video surveillance
systems demands continuous improvement in crowd
counting methods, making this a highly active area
of research and technical innovation.

Thus, the purpose of this study is to provide a
technique for accurate deep-learning based density-
aware crowd counting for intelligent video
surveillance systems.

1. LITERATURE REVIEW

Crowd counting may be executed using two
main methodologies: object detection and
density map estimation. The first approach
involves a picture as input, yielding a numerical
result that denotes the total count of individuals
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Fig. 1. lllustration of the crowd counting task
Source: compiled by the [1]
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inside the frame. In the second technique, a model
produces a crowd density map, which is then merged
to ascertain the overall headcount.

Conventional techniques for crowd counting
mostly depended on detection-based methodologies.
These technologies used image processing
techniques to identify pre-engineered elements, such
as body shapes or components, subsequently using
machine learning models. Examples of these models
include linear regression, ridge regression, Gaussian
processes, support vector machines (SVMs), random
forests, gradient boosting, and fundamental neural
networks. Nevertheless, the precision of these
approaches markedly diminished when addressing
photographs of dense crowds owing to many

problems, including object occlusion, poor
resolution, and complications related to perspective
and angles.

To address the shortcomings of detection-based
techniques,  regression-based  methods  were
developed to estimate the total population inside a
whole picture or its portions. In contrast to detection
models, these approaches do not seek to identify
particular body parts but rather use global picture
properties such as texture, foreground contrast, and
gradients.

These methods mitigate several issues
associated with poor resolution and object occlusion;
yet, they exhibit limited efficacy when used on
pictures characterized by high crowd density.

Recent studies illustrate the superior efficacy of
convolutional neural networks (CNNs) in crowd
counting tasks, attributable to their capacity for
automated extraction of intricate information.
Analogous to other computer vision tasks, including
image classification, object recognition, and
segmentation, convolutional neural  networks
(CNNs) have emerged as the preeminent method for
crowd counting, markedly surpassing conventional
techniques.

In contrast to traditional methods that just
forecast total headcount, convolutional neural
networks (CNNSs) are often used for crowd density
estimates. This method entails forecasting a density
map of the scene, which encompasses both the
overall number of individuals and their spatial
distribution inside the picture, therefore significantly
augmenting scene analysis skills.

Further studies have extensively embraced the
density estimate technique using convolutional
neural networks (CNN) as a pivotal strategy for
addressing the crowd counting issue. The design of
these models has undergone  significant
improvements to achieve optimal accuracy.

Conventionally, we assess the efficacy of any
deep learning model using benchmark datasets, and
over time, we have introduced numerous specific
datasets for crowd counting tasks.

The datasets have significantly increased the
complexity of the issue by including elements such
as elevated crowd density, size differences, scene
variety, fluctuations in lighting, unequal crowd
distribution, severe occlusions, and perspective
distortions.

Over time, researchers have created more
sophisticated CNN architectures, novel learning
techniques, and enhanced assessment criteria to
successfully tackle these issues and achieve high
accuracy on complicated data.

In recent years, many deep neural network
(DNN) models have been introduced for crowd
counting, varying in size and design:

1. Single-column models, despite being small,
have a lower performance in processing high-density
pictures and encounter scaling variation challenges;

2. Multi-column models can manage scale
variation in objects, but the number of columns
limits their adaptability to diverse item scales.
Moreover, multi-column models incur significant
computational costs due to the need to train many
columns concurrently, hence escalating resource
requirements.;

3. Single-column models with multi-scale
modules have been created to address scale changes
more efficiently in terms of computing. These
methodologies are derived from the Inception
architecture, with some design alterations;

4. People often use encoder-decoder models
when maintaining spatial resolution is crucial,
particularly for producing high-quality density maps.
These approaches provide multi-tiered supervision,
enhancing control at different phases of the network;

5. Nonetheless, both single-column and multi-
column models developed from the ground up
exhibit constrained accuracy when evaluated on
extensive datasets, particularly those with very
packed pictures. Pre-trained models, like VGG,
Inception, and ResNet, are often used to enhance
counting precision. Models using pre-trained
backbone neural networks (frontends) experience
expedited training. Nonetheless, this results in
augmented model size and execution duration,
rendering them less appropriate for real-time
applications.

2. PROPOSED MODEL

Typically, methodologies using deep neural
networks (DNNs) use conventional and dilated
convolutions as fundamental components to discern
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local patterns and density maps. The majority use
identical filters, pooling matrices, and configurations
across the entire picture, implicitly assuming
uniform congestion levels. This assumption often
proves inaccurate in practice.

Due to the dynamic variability in congested
environments, it is critical to employ a variety of
features and branches in order to effectively react to
and collect information at varying degrees of
density. Despite the fact, that different proposed
approaches demonstrating high efficiency via
various strategies, there is significant potential for
improvement in developing highly efficient
convolutional layer architectures capable of properly
addressing crowd scenarios with substantial density
variations. Usually, a size factor 3 for kernel of a
convolution filter is more efficient than bigger sizes
for extracting significant features since it captures
more details with lesser complexity, facilitating
easier network training. Reduced receptive fields
yielded enhanced performance.

Secondly, the use of patch-based and multi-
patch processing is time-consuming since identical
features must traverse several pathways and patches
again. To leverage the advantages of multi-variant
techniques, it is advisable to extract proximate
characteristics from the network and thereafter direct
them to other branches for refinement to identify
more intricate features. To use a more complex
network for crowd counting, it is essential to
implement the previously discussed strategies inside
a multi-branch framework to enhance performance.

This paper proposes a new deep encoder-
decoder architecture that incorporates hierarchical
feature extraction with focus models to give better
features for estimating crowds of different sizes and
densities.

The overall architecture of proposed technique
is illustrated in Fig. 2.

This novel structure is composed of selective
pooling as well as 1x1 and 3x3 convolutions, which

are employed to enhance the feature matrices in
order to effectively manage objects of varying sizes
inside a scene using hierarchical feature extraction.

As previously mentioned, we formulate the
problem of crowd counting by regressing the density
map of individuals in relation to a scene. There are
five primary components that make up this
framework.

These components are as follows: convolutional
network based on VGG16, a hierarchical feature
extractor, a branch block, decoder block, and focus
block. The total accuracy and efficiency of the
model for counting the number of persons in a
crowd is correlated with each of these blocks, and
there is a connection between the aforementioned
blocks.

The foundation of proposed model is based on
VGG16, which is often utilized for the extraction of
low-level characteristics. When we consider the
compromise between time and accuracy, we delete
the layers that are located between the last few
pooling levels.

Next, we apply a focus block to highlight the
most significant aspects. After that, these features
are introduced into the hierarchical block, which is a
mix of selective pooling and factor 1 and factor 3
convolutions. This block is responsible for creating
features for the decoder block.

The next phase involves the use of a global
average pooling and a fully connected layer in order
to categorize the input scene as either very dense or
sparse. After that, we transmit this information to the
corresponding decoder using the same structure.

In the decoder, there are four layers of dilated
convolution that are 3x3 in size. We place an focus
module after each of these layers. Furthermore, to
handle the disparities in congestion that occur in
sparse and dense locations, we build two variants of
the decoder module.
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Fig. 2. The overview of proposed architecture
Source: compiled by the authors
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These variants are responsible for generating
low- and high-density maps inside the input scene,
and then assigning these maps to the regression
losses that correspond to them.

Using different features from the final layer of
the decoder, we construct the resulting density map
in the final stage.

Proposed framework completes the end-to-end
training of the model by applying a classification
loss alongside the same loss for the sparse, dense,
and final output density maps.

As a result:

1. The focus block focuses its attention on the
major characteristics, specifically areas that are
congested;

2. the hierarchical block is able to create more
productive features, which are better suited for the
crowd counting job with different versions. Adaptive
pooling techniques and dilated convolutions of
varying sizes combine to accomplish this;

3. with the assistance of the branch block, the
appropriate branch of the decoder may be located in
accordance with the amount of congestion in the
region;

4. we design the mid-branch decoder to handle
any changes in congestion within the input picture.

3. EXPERIMENTAL RESULTS

Our approach will be evaluated for efficiency in
this section. We conduct these tests on different
datasets and compare the results with different
popular approaches. Since their release, these
methods have already been used to compare
different methodologies.

Evaluation metrics. Each computer application
necessitates the establishment of assessment metrics
to assess the effectiveness of the solutions.

In crowd counting, many measures are used to
evaluate model performance by juxtaposing
anticipated outcomes with annotated ground facts.

The two predominant metrics in crowd
counting are Mean Absolute Error (MAE) and Root
Mean Squared Error (MSE), defined as follows:

M
1
MAE = - > |C5 =], 1)
m=1
1 M
2
MSE = |- Z (cest— 5. )
m=1

where M refers to the quantity of training or testing

data; C;‘,’f indicates the precise count of individuals
inside the region of interest of the m-th scenario, and

CESt is the anticipated number of individuals in the
crowd.

Data Augmentation. We use data augmentation
to reduce the danger of overfitting to the minimal
number of training photos. We supplement data with
five forms of cropping and resizing. We crop each
photograph to 25 % of its source size.

The cropped photos produce four non-
overlapping segments from each size of the source
photo. Furthermore, the other variant is randomly
selected from the source image.

To resize, we simply resize the input picture to
the dimensions 768x1024 or 1024x768, depending
on the scale of the input data.

If an input image's height exceeds its width, we
simply choose 1024x768, and otherwise, we scale it
to 768x1024 size.

Results on the Shanghai Dataset. On the
Shanghai Tech dataset, it is difficult to provide an
accurate estimate of the number of pedestrians
because the issue is generated by a variety of
circumstances and variations in the amount of
congestion.

The KNN technique is used to determine the
mean path between each person and its three closest
neighbors, and y is equals to 0.25. This is done in
order to set ¢ for the part A of dataset.

In the case of part B, we used a constant value
of 15 for a.A comparison is made between our
approach and the most current state-of-the-art
methods that have been published on this dataset
(Table 1).

Table 1. Experimental results for the first part of
Shanghai dataset

Model MAE MSE
Proposed 60.5 93.2
DRSAN 69.4 96.3
CSRNet 68.1 114.9

SFCN 65.0 107.7
TEDnet 63.9 108.8

CAN 62.4 99.8

SPN 61.8 99.7
ACSCP 75.9 102.9
ADCrowdNet 63.4 99.1

Source: compiled by the authors

We go through the original published papers of
the other techniques and compile the findings of
those approaches. In the experiment, it is clear that
proposed model has obtained a mean absolute error
(MAE) of 60.5 and a mean squared error (MSE) of
93.2. Other top-ranked approaches are not as
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advantageous as our model, which demonstrates
considerable benefits over these approaches.

As can be shown in Table 2, proposed model
has obtained an MAE of 6.9 and an MSE of 11.0 on
the second part of dataset.

Table 2. Experimental results for the second part
of Shanghai dataset

Model MAE MSE
Proposed 6.9 11.0
DRSAN 10.9 17.9
CSRNet 10.7 15.9

SFCN 7.8 13.2
TEDnet 8.3 12.9

CAN 8.0 12.4

SPN 9.5 14.6
ACSCP 17.4 271.7
ADCrowdNet 7.9 13.0

Source: compiled by the authors

Both of these findings are superior to other
popular crowd counting models. The combination of
the hierarchical block and the two-variant decoder
seems to be the key to our proposed model's ability
to handle both sparse and crowded scenes, as shown
by these findings.

Because of these factors, the model that we
have presented is able to differentiate between the
crowd levels of the source video and evaluate the
crowd in accordance with the crowd level for
improved estimate.

Results on the Wex dataset. The findings of the
MAE metric are shown in Table 3, which is based
on five distinct scenarios from the Wex dataset.

Table 3. Experimental results for the Wex dataset

Model Scl | Sc2 | Sc3 | Sc4 | Sc5 | Avg
Proposed 18190 | 97 | 74 | 23 | 6.1
DRSAN 27 1120|104 |105]| 39| 7.9
CSRNet 30 |116| 87 |165| 35| 87

SFCN 2.7 | 136|107 | 124 | 35 | 8.6
TEDnet 24 1 9.9 | 114|137 | 2.7 | 8.0

CAN 29 119 99 | 80 |44 | 74

SPN 27 1135 9.0 | 153 | 3.6 | 8.9
ACSCP 29 |140| 97 | 79 | 28 | 74

ADCrowdNet | 2.1 | 143 | 11.7 | 80 | 3.0 | 7.8

Source: compiled by the authors

The suggested model has produced an average
MAE of 6.1, as seen in the table. This represents a
significant improvement over the results obtained by
CAN, surpassing the state-of-the-art state by a
margin of 1.3.

Additionally, the suggested model produces the
lowest MAE of four out of all five scenarios, with
MAE values equal to 1.8, 9.0, 7.4, and 2.3,
respectively. This is the case for all five scenes.
Based on established results, the suggested model
outperforms state-of-the-art techniques in a variety
of situations.

Results on the UCF dataset. For the purpose of
creating ground truth density maps on the UCF CC
50 dataset, we choose a configuration that is
analogous to the Shanghai Tech-A setting.

Table 4 demonstrates that the suggested model
performs much better than the models that are
considered to be state-of-the-art when applied to this
dataset.

We are able to attain a mean absolute error of
120.1 with a mean squared error of 157, which
surpasses the performance of previous benchmark
models.

As a result of our trials, we have found that the
suggested model is capable of providing an accurate
estimation of the total number of individuals across
all subgroups.

It is possible to draw the conclusion that the
suggested model is capable of functioning well in
both sparse and crowded circumstances.

Table 4. Experimental results for the UCF dataset

Model MAE MSE
Proposed 120.1 157
DRSAN 158.9 189.8
CSRNet 165.7 197.4

SFCN 173.9 201.9
TEDnet 149.3 174.7

CAN 169.7 192.5

SPN 159.1 186.0
ACSCP 181.0 209.2
ADCrowdNet 156.9 178.8

Source: compiled by the authors
CONCLUSIONS

This research presents a unique deep framework
for crowd counting. A density-variant decoder has
been integrated into the model in order to
accommodate the significant density variance that
exists within the crowded scenes.

We have also incorporated hierarchical features
and focus blocks. In order to give more accurate
crowd counting using two-scale density maps, the
proposed model has made use of a branch module.

This module is responsible for transferring the
hierarchical characteristics directly to the decoder
variant that is the most appropriate.

258

Methodological principles of
information technology

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)



Dobryshev R. Y., Maksymov M. V. /

Herald of Advanced Information Technology

2024; Vol.7 No.3: 253-261

In order to aggregate these density maps, it
makes use of the sigmoid function and generates a
gating mask for the purpose of constructing the final
density map.

The performance of proposed model in terms of
its resilience, accuracy, and generalization has been
proved by extensive tests conducted on a variety of
benchmark datasets. In comparison to the
approaches that are considered to be state-of-the-art,
proposed model is able to obtain superior
performance on virtually all of the main crowd
counting datasets.

Throughout the course of this research, we have
studied a variety of techniques for crowd counting
and density estimation in order to come up with
novel solutions that have the potential to beat the
findings of the present state of the art by significant
margins.

On the basis of our experiences, a humber of
aspects that need more investigation have been
recognized and summarized as follows:

1) A suitable method for counting the number
of people in a crowd ought to have a low level of
complexity. In light of this rationale, we believe that
future studies need to concentrate more on solutions
that are based on a single column arrangement;

2) it may be a good idea to employ a form of
zooming approach in the center of models if a
congested location is recognized. This will allow us
to focus on the high density zone and extract more
helpful features from that area for an accurate
density estimate. This will allows us to address the
intra-dense area that exists inside a scene;

3) patch-based processing of average
characteristics maps in the CNN-based model is an
additional enhancement that may be made to the
crowd counting framework. The results of our
preliminary inquiry have shown that it has the
potential to result in further enhancements to the
precision of approaches for counting crowds.
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AHOTAIIA

VY cTaTTi mpencTaBiIeHO HOBUHM MiIXiJ HA OCHOBI TJIMOOKOTO HaBYAaHHS JUIA MiJpaxyHKy HATOBIY B IHTENEKTYaJIbHUX CHCTEMaX
BiZICOCIIOCTEPEIKEHHS], 1[0 BUPIIIye 3pOCTal0dy IMOTpedy B TOYHOMY MOHITOPHUHTY I'DOMaJCBHKMX MICIb Y MICBKHX CEpeIOBHINAX.
[lomuT Ha TOYHY OIIHKY KUTBKOCTI JIIOAEH BHHHKAae dyepe3 MHpoOieMH, MOB’s3aHI 3 OE3MEKOI, TPOMAICHKHM IMOPSAKOM 1
e(eKTHBHICTIO B MICEKUX 30HaX, OCOOJIMBO IIiJ] Yac BENMKUX ITyOJIIYHUX 3aX0/iB. [CHyr0Ul METOIM MiIpaXyHKy HATOBITY, BKJIIOYAIOUH
BUSIBJICHHS 00’€KTIB HAa OCHOBI O3HAK i METOIHM perpecii, MaroTb OOMEXKEHHS B YMOBAaX BHCOKOi IIIIBHOCTI 4epe3 MEepeKpPHTTS
00’€eKkTiB, Bapiamlii OCBITJIICHHA Ta Pi3HOMAaHITHICTh JIOACBKUX ¢iryp. Ll{o6 momonatu mi BHUKIHKH, aBTOPU NPOMOHYIOTH HOBY
apXiTeKTypy eHKojepa-aexonepa Ha ocHoBi VGG16, sika BKIIIOYaE iepapXidHe BHIYYSHHS O3HAK i3 BUKOPHCTAHHSAM IPOCTOPOBOI Ta
KaHalpHOI yBard. L9 apxiTekTypa MHOKpamlye 3AaTHICTH MOZETI KEepyBaTH BapialliiMH LIUIBHOCTI HATOBIY, BHKOPHCTOBYIOUH
aJanTHUBHE MiJICYMOBYBAaHHS Ta JWJIATOBaHI 3rOPTKM Ul BHJIYYCHHS 3HAYYLNIMX O3HAK i3 INUIBHUX HaToBIIB. Jlekomep Mmopeni
JIOJATKOBO BJIOCKOHAJIOETHCS IJII OOpPOOKH pO3PIKEHHX 1 TyCTHX CHEH 4Yepe3 OKpeMi KapTH MIUJIBHOCTI, M0 MiABHOIYE il
aJIalTHBHICTP 1 TOYHiCcTh. OIiHKA 3apONOHOBAHOT MOJICNI Ha €TAIOHHUX Habopax naHux, BKIroyaroun Shanghai Tech i UCF CC 50,
JIEMOHCTPY€E Kpallli pe3yJabTaTH IOPIBHAHO 3 CYYaCHUMH METOJaMH, 3 MOMITHUMH HOKpALICHHSAMH 332 METPUKAMH CEPeIHBOI
a0COIOTHOT MMOMWIIKK Ta CEPEeIHBOKBAIPATHYHOI IIOMIJIKH. Y CTaTTi HMiAKPECTIOEThCA BKIUBICTh BPaXyBaHHS 3MiH Y CEPEIOBHILL
Ta pi3HUNI B Macmrabax y TyCTOHACEJIEHHX CEpelOBHINAX, 1 MOKa3aHO, IIO 3alpoIIOHOBaHA MOJENb e(pEeKTUBHA SK B YMOBax
PO3pimKeHoro, Tak 1 IIUIBHOTO HaToOBIy. lle mocmimkeHHsS CHpUSE€ PO3BUTKY IHTEICKTYyaJbHHUX CHCTEM BiJ€OCIIOCTEPEKEHHS,
MIPOTIOHYIOYN OLTBII TOYHWH i e(EeKTMBHHH METO]| MiJpaxyHKy HATOBIy 3 MOXJIMBHMH 3aCTOCYBaHHSIMH Yy cdepi rpoMascbKoi
0e3MeKky, yIpaBIliHHSA TPAHCIIOPTOM 1 MiCBKOTO TUTaHYBaHHS.
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