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ABSTRACT

Depth maps are essential for various applications, providing spatial information about object arrangement in a scene. They play
a crucial role in fields such as computer vision, robotics, augmented and virtual reality, autonomous systems, and medical imaging.
However, generating accurate, high-quality depth maps is challenging due to issues like texture-copying artifacts, edge leakage, and
depth edge distortion. This study introduces a novel method for refining depth maps by integrating information from color images,
combining structural and statistical techniques for superior results. The proposed approach employs a structural method to calculate
affinities within a regularization framework, utilizing minimum spanning trees (MST) and minimum spanning forests (MSF). Super-
pixel segmentation is used to prevent MST construction across depth edges, addressing edge-leaking artifacts while preserving
details. An edge inconsistency measurement model further reduces texture-copying artifacts. Additionally, an adaptive regularization
window dynamically adjusts its bandwidth based on local depth variations, enabling effective handling of noise and maintaining
sharp depth edges. Experimental evaluations across multiple datasets show the method's robustness and accuracy. It consistently
achieves the lowest mean absolute deviation (MAD) compared to existing techniques across various upsampling factors, including
2%, 4x, 8%, and 16x. Visual assessments confirm its ability to produce depth maps free of texture-copying artifacts and blurred edges,
yielding results closest to ground truth. Computational efficiency is ensured through a divide-and-conquer algorithm for spanning
tree computations, reducing complexity while maintaining precision. This research underscores the importance of combining
structural and statistical information in depth map refinement. By overcoming the limitations of existing methods, the proposed
approach provides a practical solution for improving depth maps in applications requiring high precision and efficiency, such as
robotics, virtual reality, and autonomous systems. Future work will focus on real-time applications and integration with advanced
depth-sensing technologies.
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INTRODUCTION, FORMULATION OF THE segmentation, and pose estimation, enhancing the
PROBLEM accuracy and reliability of models.

In fields such as medicine, autonomous
vehicles, gaming, and cartography, depth maps are
applied to data analysis, navigation, and
visualization of complex objects and environments.

Depth maps can be generated using a variety of
methods depending on the application and available
resources. Active sensing methods involve emitting
signals into the environment and analyzing their
responses. For example, stereo vision uses two
cameras to capture different perspectives of a scene
and calculates depth by comparing disparities
between the images. LIiDAR emits laser pulses and
measures the time it takes for the reflected light to

Depth maps play a crucial role in various fields,
as they provide information about the spatial
arrangement of objects in a scene. They enable
machines and systems to understand the three-
dimensional structure of the environment, which is
particularly important for tasks in computer vision
and robotics [1].

Depth maps make it possible to create more
realistic and interactive applications, such as those in
augmented and virtual reality.

These data are also widely used in machine
learning for tasks like object detection, scene

return, while time-of-flight cameras determine depth
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object. Structured light techniques project known
patterns onto a scene and analyze their distortion to
estimate depth [2]. On the other hand, passive
sensing methods rely on analyzing existing visual
data without emitting signals.

Monocular depth estimation uses a single image
and algorithms, often powered by machine learning,
to infer depth from visual cues such as shading and
texture gradients.

Multi-view stereo processes multiple images
taken from different viewpoints to reconstruct a
scene's depth. Both active and passive methods are
widely used in various fields, such as robotics,
virtual reality, and autonomous systems, to provide
accurate spatial information [3].

Active methods for generating depth maps face
several challenges that can affect their performance
and applicability. These shortcomings can be
addressed to some extent using enhancement
techniques that utilize color images, as they offer
supplementary structural details about the scene. The
close relationship between texture and depth
variation enables notable enhancements in the
precision of depth maps. As a result, combining
depth information with color data emerges as a
compelling approach for improving depth sensing
systems [4].

Thus, the purpose of this study is to develop a
method for robust depth map refining with the help
of color image.

The proposed method better retains the
structure of the depth map by using a structural
approach to calculate affinities in the regularization
term.

The proposed method differs from other
methods in that it allows for more accurate
calculation of affinities by utilizing the space formed
by multiple spanning trees.

The proposed affinity calculations are grounded
on paths within a spanning tree or several
neighboring spanning trees. This approach will
allow an efficient representation of the local depth
structure. In addition, the edge weights of each
spanning tree represent a soft boundary dissimilarity
metric, which reduces texture duplication artifacts.

1. LITERATURE REVIEW

The existing methods, including those proposed
in the previous subsections, compute guidance
affinities in the regularization term using a non-
structural approach based solely on color and depth
differences between a pixel and its neighbors [5, 6],

[7]

This approach neglects the local structure of the
depth map, which can result in excessive smoothing
of depth edges on the enhanced depth map,
particularly in cases like 16x depth super-resolution

[8].

In contrast, it has been observed that the tree
filter demonstrates more robust performance in
preserving edges. This filter is widely used in
various computer vision tasks, such as structure-
preserving smoothing and stereo matching. In these
methods, an MST (Minimum Spanning Tree) is
utilized to automatically separate dissimilar pixels
that are spatially close to each other, turning the tree
distance into an edge-aware metric [9].

However, global MSTs suffer from the issue of
edge leakage, where a single tree connects all pixels
in an image, spreading smoothing effects globally
along the MST. This construction inevitably crosses
strong edges, leading to their distortion [10].

The proposed method calculates anisotropic
guidance affinities in the regularization term based
on the tree distance between two pixels. To avoid
constructing an MST across depth edges, which
causes edge-leaking artifacts, the method introduces
an approach inspired by creating an MST for each
super-pixel on a color image generated through
over-segmentation [11].

Since the color image is high-quality, and
pixels within the same super-pixel share similar
characteristics, tree distance calculations become
more reliable within super-pixel regions. Moreover,
due to over-segmentation, pixels and their neighbors
located on adjacent MSTs may have similar depth
values, so connections between adjacent MSTs must
also be considered. These neighboring MSTs are
combined into a structure referred to as the
Minimum Spanning Forest (MSF) [12]

If guidance affinities are computed based only
on the registered color image, this can lead to
texture-copying artifacts and blurred depth edges
caused by inconsistencies between the depth map
and the registered color image [13].

Building on the proposed inconsistency model,
which has proven effective in mitigating texture-
copying artifacts, edge weights within each MST in
the MSF are calculated based on this model. These
two complementary components work together to
achieve robust depth map enhancement.

2. PROPOSED METHOD
2.1. Generation of minimum spanning tree

The super-pixel segmentation algorithm is
utilized to perform over-segmentation on the color
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image, effectively preventing the construction of a
minimum spanning tree across depth edges and
thereby reducing leaking-edge artifacts [14].

This advanced segmentation technique offers
strong alignment with prominent image edges while
maintaining linear computational complexity.
Within each super-pixel, an 8-connected weighted
subgraph SG (N, E, W) is created.

The nodes N of this subgraph represent all the
pixels within the segment, E includes all edges
connecting these nodes, and W denotes the set of
edge weights, defined as per the specified equation:

Wk, 1) = |VEY, 1)

where VX is the color variation of k and 1. Since the
color image and the depth map exhibit different
texture patterns, this configuration results in texture-
copying artifacts and blurred depth edges.

To address these issues, the proposed method
explicitly incorporates an edge inconsistency
measurement into the construction of the spanning
tree. Currently, within each spanning tree, the
weight of an edge connecting two neighboring nodes
is determined by their color similarity, as defined in
equation (1).

Using these subgraphs, a spanning tree is
constructed for each super-pixel by eliminating
redundant edges. However, due to over-
segmentation, pixels and their neighboring pixels
located on adjacent spanning trees may still share
similar depth values. Consequently, it is necessary to
account for edges that connect adjacent spanning
trees [15].

To ensure consistency with the weights of
edges within each tree, the weights of edges linking
adjacent trees are calculated based on color and
depth differences, thereby reducing texture-copying
artifacts.

Specifically, edges defined by pixels with
similar color and depth values, situated on adjacent
spanning trees, extend the spanning tree of a super-
pixel into a forest for the entire image without
crossing significant edges [16].

This approach can be viewed as a supervisory
mechanism to mitigate the leaking-edge problem. A
similar configuration is used in methods that rely
solely on color similarity for edge-aware smoothing.
The proposed forest, however, can be interpreted as
a distance space constructed based on image content,
where spatial factors are integrated into the paths
between pixels.

Unlike the non-structural Euclidean distance
space employed in the dual kernels of bilateral
filters, the distances computed in the proposed MSF
reflect the structural characteristics of the image
[17].

The proposed method represents each pixel p as
a two-dimensional point Pnt,(cln, dv,), where
clr, denotes its color value and dv, represents its
depth value. The distance metric between two pixels
is defined using the L1-norm.

The optimal pair of nodes (k’,1") connecting
adjacent super-pixels SF, and SPg is determined as:

o . _
k', 1) = krgslglantk Pnt||,
lESPB

(@)

when performing an exhaustive search, the
computational complexity is 0(t,,t,), where t; and
t, represent the number of nodes in their respective
trees.

This approach becomes computationally
expensive when the super-pixels are large. To
overcome this issue, the proposed method employs a
more efficient divide-and-conquer algorithm which
reduces the complexity to O((t; + t;) log(t; + t3)).

The distance between two neighboring nodes in
the regularization term is calculated as follows.

If k and [ belong to the same super-pixel, their
distance is determined using the standard tree
distance along the path within the spanning tree:

n
aleD = ) Wk kiso), ©
i=0
where the distance between adjacent nodes

(k;, k;+1) along the path is computed efficiently
using the Lowest Common Ancestor method.

If k and [ are located in different super-pixels,
the distance is computed in such components:

d(k,1) = d(p,p) +d(LI') + 0.5
x (VKU 4 ukty @)

Here, k' and [’ are the closest pair of nodes
within adjacent trees, considering both color and
depth similarities, as expressed in the final term of
equation (4).

The terms VE'Y and VE'Y' represent the color
and depth differences between pixels k" and I" from
the guided color image and the coarsely interpolated
depth map, respectively. The pairs (p,p’) and (1,1")
correspond to pixels located within the same tree.

ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Methodological principles of
information technology

363



Kondratyev S. B., Antoshchuk S. G., Hodovychenko M. A. Ustenko S. A.

[ Herald of Advanced Information Technology
2024; Vol.7 No.4 : 361-370

2.2. Using edge dissimilarity in spanning tree

The edge dissimilarity measurement model
demonstrates a strong capability in reducing texture-
copying artifacts.

To ensure clarity, this section summarizes the
model as follows: it employs a bi-directional
evaluation by alternating the roles of the color edge
map and the depth edge map. In each direction, the
optimal matching pairs of edge pixels are identified
using forest optimization [18].

The data term incorporates local structural
information, which is determined through Minimum

Weighted  Bipartite ~ Matching,  while  the
regularization term reflects global structural
information.

The cost associated with the optimal matching
of edge pixels serves as the edge inconsistency
measurement, ranging from [0, 1].

Inspired by this model, the proposed method
integrates it into the spanning tree construction to
reduce texture-copying artifacts. In the method, 6
represents a set of confidence values for pixels [19].

A smaller 6 value indicates greater edge
consistency. More specifically, the method redefines
W for the edge (k, 1) as follows:

W' (kD) = [VE x (1 = 6;) + |V&|
X 9kl, (5)

where 0, is the confidence value for the pixel pair
(k, 1), is defined as 6y, = max(6(k),8(1)) to
enhance the preservation of depth edges. Here 6 (k)
and 6 (1) represent the confidence values for pixels k
and [, respectively.

When the color edge map aligns more closely
with the depth edge map (i.e., 8, approaches zero),
VKL takes on a more significant role in determining
edge weights within the spanning tree, and vice
versa.

The newly defined spanning edge weights W’
replace the original weights [20].

Unlike earlier forest-based depth enhancement
approaches, which do not incorporate structural
information in regularization term calculations, the
proposed method leverages the forest distance to
better preserve depth edges.

Furthermore, texture-copying artifacts are
substantially reduced by utilizing the improved
spanning tree construction, which explicitly
incorporates the edge inconsistency measurement
model [21].

2.3. Window variations for calculating
affinities

In [22], it was observed that the window w has
a significant impact on the model's performance. For
example, when two pixels used in the regularization
term of the forest exhibit markedly different depth
values, a smaller w provides superior results.

Consequently, if the depth difference between
neighboring pixel pairs in the regularization term is
known, the bandwidth w can be adaptively selected
as a prior to reconstruct a high-quality depth map.
This adaptive approach helps preserve depth edges
and reduces artifacts caused by noise and texture
copying [23].

In this method, the coarsely interpolated depth
map DM is employed to estimate the prior, which
dynamically controls w.

However, due to the low quality of DM, the
estimated edge locations may deviate from their true
positions.

This makes it unreliable to directly calculate the
depth difference between a pixel pair k and [. To
address this, the proposed method defines two sub-
regions (9x9 in size) centered at k and [, forming
pixel sets Set;, and Set;.

The maximum absolute difference Dif fiax
between these sets is then used to estimate the
potential prior for k and L.

A large Dif fi,q, indicates that the pixel pair is
near a depth edge, and a small w should be assigned
to better preserve the edge. Conversely, a small
Dif fimax SUQgests that the pixel pair is in a smooth
region, where a larger w can be chosen to suppress
noise and minimize texture-copying artifacts [24].

The straightforward calculation of Dif fiax
involves determining the differences for all elements
in Set, and Set;, which has a computational
complexity of 0(v?), where v is the number of
elements in each set. To improve efficiency, a
method with O (v) complexity is introduced.

First, the minimum and maximum depth values
(max,, min,, max;, min;) are computed for Set,
and Set;. Dif fia 1S then calculated as:

Dif fimax = max(lmax;
—ming|, |[max; (6)
— ming|).

Given the variability in noise conditions, it is
challenging to model the relationship between w and
Dif fimax With a fixed function (e.g., linear).
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The proposed method calculates Dif f,q, fOr
each pixel pair in the regularization term and
classifies them into three categories using double
thresholds t; and t;, representing regions near strong
edges, weak edges, and smooth areas. Different w
values are then assigned for each region as defined
below:

2, Dif fiax > tn(strong edge)
10, Diffmax < ti(smooth area).
4, otherwise(weak edge)

3. EXPERIMENTAL RESULTS

The evaluation of the proposed method focuses
on depth map super-resolution and depth map
completion across various datasets. In the
experiment conducted on synthetic datasets
downsampling degradation was considered.

The noise-free datasets, based on ground truth
data from the Middlebury Datasets, were
downscaled using nearest neighbor interpolation
[25].

The proposed method was tested at various
upsampling factors, including 2x, 4x, 8x, and 16x,
and compared against other methods. Tables 1 and 2
present the upsampling results for four different
factors, with optimal results highlighted in bold.

The proposed method consistently achieves the
lowest Mean Absolute Deviation in all cases.

()

w =

The Mean Absolute Difference is a statistical
indicator that computes the average of the absolute
deviations between corresponding elements in two
datasets. It is widely applied to measure the overall
error or discrepancy between predicted and actual
values or between two images in the field of image
processing.

N
1
MAD = N,lei - yil, (8)
l=

where N represents the total number of elements in
the datasets, and x; and y; are the corresponding
elements from the two datasets being compared.

Thanks to the forest-based approach for
computing guidance affinities, the proposed method
attains the lowest MAD across all datasets.

Fig. 1 illustrates the experimental results for 8x
upsampled depth maps on the “Laundry” and
“Dolls” datasets.

The results indicate that Total Generalized
Variation suffers significantly from texture-copying
artifacts. Additionally, artifacts near depth edges are
noticeable in the results of Joint Geodesic Filtering.
In contrast, the proposed method produces results
closest to the ground truth, with no texture-copying
artifacts or blurred depth edges.

Table 1. Experimental results of the proposed method and peer methods

Dataset
Method Book Moebius Art
2X 4x 8x 16x 2X 4x 8x 16x 2X 4x 8x 16x
AR [26] 013 | 021 | 036 | 0.78 | 0.13 | 0.23 | 042 | 0.83 | 0.18 | 0.49 | 0.64 | 1.99
Guided [27] 023 | 036 | 059 | 1.15 | 024 | 039 | 0.61 | 1.17 | 0.65 | 1.03 | 1.69 | 3.48
JBU [28] 0.18 | 037 | 0.75 | 158 | 0.19 | 038 | 0.77 | 1.48 | 0.46 | 0.86 | 1.70 | 3.37
TGV [29] 020 | 028 | 043 | 0.84 | 021 | 030 | 051 | 0.89 | 0.47 | 0.67 | 1.19 | 2.39
Bicubic [30] 014 | 030 | 061 | 1.16 | 0.14 | 032 | 061 | 1.15 | 050 | 1.00 | 1.88 | 3.61
MLS [31] 0.17 | 028 | 0.47 | 118 | 0.16 | 0.26 | 051 | 094 | 0.28 | 0.70 | 1.06 | 2.19
OMREF [32] 022 | 034 | 059 | 119 | 025 | 0.37 | 0.66 | 1.27 | 0.60 | 0.98 | 1.91 | 3.80
Proposed 0.09 | 018 | 0.33 | 0.69 | 0.12 | 0.20 | 0.38 | 0.79 | 0.16 | 0.45 | 0.61 | 1.45
Source: compiled by the authors
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Table 2. Experimental results of the proposed method and peer methods (continuation)

Dataset

Method Dolls Reindeer Laundry

2X 4x 8x 16x 2X 4x 8x 16x 2X 4% 8x 16x

AR [26] 022 | 035 | 052 | 082 | 0.23 | 042 | 062 | 1.12 | 021 | 035 | 052 | 1.14
Guided [27] 029 | 036 | 057 | 1.15 | 043 | 056 | 0.89 | 1.82 | 040 | 054 | 098 | 1.92
JBU [28] 022 | 040 | 0.76 | 1.48 | 0.28 | 052 | 1.02 | 1.90 | 0.27 | 051 | 0.95 | 197
TGV [29] 023 | 035 | 072 | 221 | 033 | 051 | 1.05 | 3.07 | 032 | 057 | 0.24 | 3.39

Bicubic [30] 022 | 038 | 068 | 1.20 | 0.32 | 057 | 1.01 | 189 | 0.30 | 056 | 1.06 | 1.97

MLS [31] 025 | 038 | 062 | 099 | 034 | 065 | 0.77 | 145 | 025 | 0.41 | 0.83 | 1.56

NLMR [33] 0.18 | 033 | 058 | 107 | 022 | 039 | 065 | 1.30 | 0.19 | 0.35 | 0.57 | 1.16

Proposed 011 | 024 | 044 | 077 | 013 | 029 | 051 | 1.01 | 012 | 0.26 | 0.45 | 0.95

Source: compiled by the authors

Fig. 1. Visual comparison of depth maps:
a—source image; b — TGV method; ¢ — JGF method; d — proposed method

Source: compiled by the authors
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CONCLUSIONS

This study presents a new method for refining
depth maps using color image data. The proposed
approach improves the accuracy of depth maps and
preserves structural details by employing a structural
affinity calculation method based on minimum
spanning trees and forests.

The method effectively eliminates edge-leaking
artifacts, typical for global minimum spanning trees,
through the application of super-pixel segmentation,
allowing depth edges to be preserved with minimal
distortion.

The integration of an edge inconsistency
measurement model into the spanning tree
construction process successfully reduces texture-

variations, significantly enhances the method's
ability to handle different noise levels and depth
discontinuities. Experimental results demonstrate
that the proposed method achieves the lowest mean
absolute deviation across various datasets and
upsampling factors. Visual comparisons confirm the
superiority of the refined depth maps in preserving
details without introducing artifacts.

By utilizing a divide-and-conquer algorithm for
spanning tree computations, the method maintains
high computational efficiency, making it suitable for
practical applications in areas such as computer
vision, robotics, and augmented reality. This study
represents a significant step forward in depth map
refinement, providing robust results across various

scenarios while preserving computational efficiency.
Future work is expected to explore the

method’s application in real-time systems and its

integration with other depth-sensing technologies.

copying artifacts, making the refined depth maps
more realistic and accurate.

The dynamic selection of the regularization
term's window bandwidth, based on local depth
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AHOTALISA

Kaptu rimOuHM € Ba)TMBUM IHCTPYMEHTOM Ut 6araThoOX 3aCTOCYBaHb, OCKIJIBKM BOHHM HAJAIOTh MPOCTOPOBY iH(OpMALIiio
PO pO3TalIyBaHHs 00’ €KTIB y clieHi. BoHM BiirparoTh KIIOYOBY POJib Y Takux cdepax, sK KOMIT IOTEpPHHI 3ip, pOOOTOTEXHIKa,
JIOTIOBHEHA Ta BipTyalibHA PEasbHICTh, ABTOHOMHI CHCTEMH Ta MeAW4YHA Bi3yamizamis. OfHAK CTBOPEHHS TOYHHX 1 BHCOKOSIKICHUX
KapT MIMOMHY 3aJIMIIAETHCS CKIIAJHAM 3aBJAHHIM Yepe3 Taki MpoOieMH, sk apTeakTH KOIMFOBAaHHS TEKCTYP, NPOTIKaHHS I'PaHMIb
Ta CIHOTBOPCHHS I'PAHUIb MTHOMHU. Y L[bOMY JIOCHIZKEHHI 3alpOIIOHOBAHO HOBHMI METOJ YTOYHEHHS KapT IJIMOWHH, IO iHTErpye
iH(pOpMaIIif0 3 KOTbOPOBHX 300pakeHb, MOEAHYIOUH CTPYKTYPHI Ta CTaTHCTHYHI MiIXOMM Ul AOCSITHEHHS BHCOKHX PE3yJbTaTiB.
3anmpornoHOBaHMIA Mi/IXifl 3aCTOCOBYE CTPYKTYPHUIT METO[ [UTst 00UMCICHHS aiHHOCTEH y paMKaxX peryispu3ailii, BAKOPUCTOBYIOUH
MiHiManbpHi octoBHI nepeBa (MST) ta minimanbHi octoBHi Jick (MSF). [{ns 3amobiranus nodynosu MST uepe3 rpaHuil riuOuHA
BHKOPHUCTOBYETHCSI CETMEHTAIIisI Ha CYMEPIiKCeNi, MO J03BOJSIE€ YHUKHYTH MPOTiIKaHHS TPaHUIb 1 30epiratu aeranmi. Moaenb OIiHKH
HECYMICHOCTI TPaHHIb JOJATKOBO 3MEHINye apTeakTd KOMIOBaHHS TeKcTyp. KpiM TOro, aganTtuBHe perymspu3aiiiiHe BiKHO
JMHAMIYHO HAJIAIITOBYE CBOIO MIMPUHY 3aJ€KHO BiJl TOKATBHUX 3MiH MIHOMHY, IO T03BOJISIE €PEKTUBHO CIPABISATHCS 3 IIyMaMH Ta
30epiratd YiTKICTh TpaHUNb TIHOMHU. EKcrepuMeHTanabHA OIliHKa Ha PIi3HUX HAOopax MaHWX IEMOHCTPYE BHCOKY TOYHICTH i1
HailHICTh MeTony. BiH crabinpHO 3a0e3medye HaifHIWKYE cepelHe abcomoTHe BiaxwieHHS (MAD) y mopiBHSHHI 3 iCHYFOUUMH
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TEXHIKaMU NpH Pi3HUX KoedillieHTax MacmTa0yBaHHs, BKIIOUaoun 2%, 4%, 8§x ta 16x. BisyanbHi OmiHKY MiATBEPKYIOTH 3/1aTHICTh
METOJly CTBOPIOBATH KapTH TIHOMHM Oe3 apTedakTiB KOMIIOBAHHS TEKCTYp 1 PO3MHUTTS TpaHUIlb, MAKCHMAaJIbHO HAOJMKEHi 10
eTaToHHNX AaHuX. OOuucIIoBaIbHA €EKTHBHICTH 3a0€3MMeuyeThCS 3aBISIKA alITOPUTMY «PO3MIUISH 1 BIamgaproi» Uil OOYHCICHHS
OCTOBHHX JIEPEB, IO 3MEHIIYE CKIATHICTh NpH 30€pekeHHI TOYHOCTi. JIOCHIDKEHHS MiJKPECITIOE BaKIHMBICTh TOETHAHHS
CTPYKTYPHOI Ta CTaTUCTUYHOI iH(MOpMalii y BIOCKOHAIECHHI KapT TiauOwHW. [lojonaBimm OOMEXEHHS ICHYFOUMX METOMIB,
3aIPONIOHOBAHUM ITi/IXiJ] Ha/la€ TPaKTUYHE PIIIEHHS JUIs IIOKPAIIEHHs KapT TIIHOMHH y JoJaTKaxX, 0 HOTPeOyIOTh BHCOKOI TOYHOCTI
Ta e(pEeKTUBHOCTI, TaKUX SIK POOOTOTEXHiKa, BipTyaJlbHAa pPEaJbHICTh Ta aBTOHOMHI cHUcTeMH. Y MailOyTHpOMY mependadaeThest
JIOCITIJDKEHHS 3aCTOCYBaHHS METO/ly B pealbHOMY 9aci Ta HOro iHTerpartis 3 ImepeoBUMH TEXHOJIOT1SIMH OTPUMAHHS TIINOUHU.

Kurouosi cioBa: xaptu rimbus; 3D-pexoHcTpyKIis; 00poOka 300paKeHb; NPOCTOPOBHI aHANI3 JaHWX, YTOYHEHHS JaHHX;
CEHCOpHA Bi3yallizallisi; BHSBJICHHS KpaiB, 3MCHIICHHS IIyMYy; BHMIPIOBAaHHS TJIMOWHH; OOYMCIIOBANBGHA Bi3yallizallis; JIOTIOBHEHA
peaNbHICTh; aBTOHOMHI CHCTEMH
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